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1 Summary

1.1 Introduction

N=4 super Yang-Mills is the simplest four-dimensional quantum field theory in terms of

properties relating to symmetry, finiteness, vanishing of amplitudes, resummation, etc.

However, there is still no tractable formalism for calculating its amplitudes that directly

incorporates these features.
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There has been some success with methods based on S-matrices. Being on shell, they

are necessarily focused on infrared structure; their utility for studying properties relating

to confinement is not clear. They include: (1) twistor-based recursion relations [1], which

give simple expressions for tree amplitudes, but have difficulty with loops, (2) unitarity-

based methods [2], and (3) string-based methods [3], which have yielded similar results for

bosonic factors, but are inherently infrared due to their basis on (the leading order of) the

JWKB expansion.

More general approaches incorporate the full off-shell supersymmetry manifestly, but

prefer the ten-dimensional theory, showing no advantages unique to four dimensions: (1)

Pure spinors [4] have complicated loop insertions (related to picture changing) that resemble

BRST operators. (There is also the related problem of the lack of a gauge-invariant classical

mechanics action, and thus of the usual b and c ghosts.) (2) The use of a ghost pyramid of

spinor coordinates [5] has a BRST operator (following from an infinite set of constraints)

that becomes complicated in the presence of a background (although it can be simply

truncated in applications so far), and its viability at higher loops is still being investigated.

In this paper we present the ingredients for a new formulation of this theory based

on N=4 projective superspace [6, 7]. Although a complete formalism exists for describing

4D N=2 renormalizable quantum field theories in N=2 projective superspace [8] (which,

however, could stand some further elucidation), little has been done for the N=4 analog

at the interacting level. (There is an N=3 harmonic formulation [9], but no amplitudes

have been calculated with it. Recently, a modified N=4 harmonic superspace has been

proposed [10]; however, it failed to obtain the correct propagating degrees of freedom).

However, the simplest expression for the 4-point amplitude kinematic factor (and thus

presumably the amplitude to all orders, after including the usual scalar loop factors) in

normal (super) spacetime (or its conjugate momentum superspace), as opposed to super-

twistor space, is in projective superspace [11]. (We will present a new derivation of this

result from supertwistor space below.) This is due to the fact that the projective superfield

strength is a scalar, while the chiral superfield strength, as follows from chiral supertwistor

space (which is geared for MHV amplitudes), is a tensor, whose chirality holds only at the

linearized level. This suggests that a projective formulation, at the (interacting) first- or

second-quantized level, would provide the simplest derivation of this result. Also, being in

spacetime as opposed to twistor space, it would directly allow an off-shell extension.

After introducing projective superspace based on not only the superconformal group

but also the super anti-de Sitter group, in the following section we discuss the construction

of constraints using suitable group generators, and proceed to solve them for the simple N=0

case. In section 3 we give a simple set of first-class superconformal (super AdS) constraints

for first-quantization of the superparticle (based on an earlier description for AdS5×S5 [12]),

solve them, and give the corresponding action. From these constraints results a simple

BRST operator. There is a supersymmetric ghost “tower” (but not a “pyramid”) for all

the coordinates. Projective superspace is found in section 4 as a first-quantized (partial)

gauge choice. It is both a (partial) unitary gauge, in that it eliminates constraints and

their corresponding ghosts, and a covariant gauge. In section 5 the projective superspace

formalism for N=4 Yang-Mills is derived by the corresponding truncation from the full

– 2 –
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superspace, which is possible only with projective superspace. Section 6 shows how four-

point amplitudes are simpler in projective superspace than chiral. We conclude with some

general remarks.

1.2 Superconformal

The superspace we use was described in previous papers [6, 7, 13]. Most of its simpli-

fications follow from the fact that its coordinates are conveniently arranged in a single

matrix. It can be understood as a graded matrix generalization of quaternionic projective

space. As a result its superconformal transformations can be represented as fractional

linear transformations:

w′ = (wc + d)−1(wa + b)

or the equivalent

w′ = (ãw + b̃)(c̃w + d̃)−1

in terms of the (P)SU(N|2, 2) group element

(

a c

b d

)

=

(

d̃ −c̃

−b̃ ã

)−1

or in linearized form as

δw = α + βw + wγ + wǫw

where w is an (n|2) by (N − n|2) matrix for the case of N supersymmetries, where “n”

indicates their “twisting”: n = 0 (or N) describes (anti)chiral superspace, while n = N/2

describes the preferred superspace, which allows a type of reality condition because this

matrix is then square, satisfying a form of hermiticity. It then has an equal number of θ’s

and θ̄’s, as well as the usual x’s and some R-symmetry coordinates y:

wA′
A =

(

a α

a′ ya′
a θa′

α

.
α θ̄ .

α
a x .

α
α

)

The (pseudo)unitarity of the group element implies a charge conjugation transforma-

tion [7]: Cw transforms in the same way under the group as w if we define

(Cw)
†

≡





a′ α

a −y−1
a
a′

iy−1
a
b′θb′

βCβα

.
α −iC

.
α
.
β θ̄ .

β
by−1

b
a′

C
.
α
.
β
(

x .
β

β − θ̄ .
β

by−1
b
b′θb′

β
)

Cβα





The superconformally invariant (4D extension of the Hilbert space) inner product is then

〈A|B〉 ≡

∫

dw(CA)(w)B(w) = 〈B|A〉∗

for any A and B that transform as half-densities

dw′[A′(w′)]2 = dw[A(w)]2

– 3 –
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where CA, which transforms in the same way as A, is defined by the relation of complex

conjugation to charge conjugation in the above inner product,

(CA)(w) ≡ [det(y)]− str(I)[A(Cw)]†, str(I) = 1
2N − 2

This superspace has various descriptions in terms of cosets [6] or related projections [7,

13]. A manifestly superconformal description is most natural in a projective lightcone

formalism [7, 13]: in that approach, one would start with the coset of the superconformal

group with respect to a classical (isotropy) group, and take a contraction of the latter

(“projective lightcone limit”), which makes some of the original coordinates (including one

from spacetime) nondynamical. Unfortunately, the interpretation of the resulting action

remains unclear.

1.3 Super anti-de Sitter

In this paper we use a new approach: we first formulate the superparticle theory in the

group space of the isometry group. We then choose first-quantized gauge conditions, which

generate the isotropy group. Thus the “full” superspace of the isometry group is reduced

to its projective coset. This approach has the advantage that before gauge fixing the

Yang-Mills background can be constructed with covariant derivatives, which require the

full superspace, while after gauge fixing the theory can be quantized using just projective

superspace, which is all the Yang-Mills prepotential requires. Also, the fact that the action

for the N=2 vector multiplet in harmonic superspace is nonlocal in the internal coordinates

is analogous to Coulomb-like interactions, suggesting such spaces are the result of partial

gauge fixing from larger superspaces with local actions. In general, reduction of the number

of fermionic coordinates is useful for quantization because only one quarter of those of

the full superspace are physical; any unphysical coordinates must be canceled by ghosts.

However, in such spaces nonrenormalization theorems are not obvious.

As the isometry group we choose the super-anti de Sitter group (in four dimensions).

The isotropy group is the super-anti de Sitter group in one lower dimension (three), up to

questions of signature. (Some Wick rotation is involved, since we really want 3D de Sitter

symmetry, not 3D anti-de Sitter, to get anti-de Sitter space SO(3,2)/SO(3,1), but only the

anti-de Sitter symmetry can be supersymmetrized. This Wick rotation leads to modified

reality conditions, which always occur in projective space [7, 8].) Although the manifest

symmetry is only super-anti de Sitter, the superconformal invariance of super Yang-Mills

in D=4 guarantees the result is directly applicable to flat space. (Pure spinors have also

been used to describe 4D N=4 Yang-Mills in super AdS, but using the maximal bosonic

isotropy group [14])

The relevant cosets are then

OSp(N|4)

OSp(n|2)OSp(N− n|2)

which can readily be seen to yield the rectangle of coordinates given above. (This isotropy

group was also found in the projective lightcone approach. The case n=0 of this coset,

namely OSp(N|4)
OSp(N|2)Sp(2) , was used in [15] to describe self-dual supergravity).

– 4 –
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We can also take a contraction of the isometry, a graded generalization of the con-

traction used to obtain the Poincaré group from the anti-de Sitter group: in terms of the

algebra

[H,H} = H, [H,G/H} = G/H, [G/H,G/H} = H

we simply drop the right-hand side of the last equation. The result is

I[OSp(n|2)OSp(N − n|2)]

OSp(n|2)OSp(N− n|2)

where the “I(nhomogeneous)” part is just translations with respect to the coordinates of

the rectangle described above. The coset is now Abelian, and consists of the usual “super-

translations” of the projective group: spacetime translations, half of the supersymmetries,

and part of the R-symmetry. However, although the part of the isometry group acting on

Lorentz (spinor) indices is just the Poincaré group, the full group is not the super Poincaré

group, because the isotropy group is unchanged: the last consists of the Lorentz group, a

subgroup of R-symmetry, and the sum of the other half of the supersymmetries and the

corresponding S-supersymmetries. So we have the usual flat spacetime, but not the usual

flat full superspace. Since the coset space is our projective superspace on which our su-

perfields depend, while the isotropy group is the tangent space, this means we have a flat

(and torsion-free) coordinate space with a curved tangent space, the opposite of the usual.

We will use both these cosets below (more or less simultaneously, since it’s easy to

see how to contract the former to the latter). Both isometry groups are subgroups of the

superconformal group.

2 Groups without cosets

2.1 Constraints

All the constraints we consider in the following sections are first-class. All the actions are

of the form

S =

∫

dτ L, L = −
.
zιpι + λiGi

for superspace coordinates z and their conjugate momenta p, and constraints G and their

Lagrange multipliers λ, all as functions of the worldline parameter τ .

For reasons mentioned above, we define our “full” superspace as the entire supergroup

space, rather than just a coset. The free field equations of the theory are expressed at the

first-quantized level as constraints quadratic in the group generators. (This is “dual” to

writing them in the same form in terms of covariant derivatives.) We begin by reducing

– 5 –
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the (symmetrized) square of the generators: the three general (finite-dimensional) cases

are for superconformal in D=3,4,6 (or 1 more dimension for super-AdS),

OSp(N|4) :
(

⊗
)

S
= ⊕ ⊕ ⊕ •

(P)SU(N|2, 2) : ( • ⊗ • )S =
•
• ⊕ • • ⊕ • ⊕ •

OSp ∗ (8|2N) :
(

⊗
)

S
= ⊕ ⊕ ⊕ •

(OSp has a real defining representation, OSp* has pseudoreal; thus the former has bosonic

subgroup SO(N)Sp(4), while the latter has SO*(8)USp(2N).) In each case we have listed

the 4 irreducible representations in the following order:

1. nonvanishing on shell, most symmetric in spacetime spinor indices;

2. vanishing for superconformal only, most antisymmetric in spacetime spinor indices,

includes flat Klein-Gordon;

3. vanishing for both superconformal and AdS, single supertrace, includes Pauli-Luban-

ski;

4. vanishing for both superconformal and AdS, double supertrace (Casimir, with a dot

for its singlet tableau), AdS Klein-Gordon.

We use graded symmetrization, so “symmetric” in the tableaux means symmetric in

the former label of the group, since in the first and last cases that has the symmetric metric.

For the cases of interest in D=4, this means that R-indices are considered as bosonic, and

Lorentz spinor indices as fermionic, for purposes of sign factors from reordering indices.

So, e.g., str(MA
B) = +MA

A. For the unitary case, dots in boxes refer to the complex

conjugate representation; ordering of the dotted block with respect to the undotted block

is arbitrary. In the cases where the ranges of the bosonic and fermionic indices are the

same (N=4), supertracelessness is undefined (str(I) = 0), so the 3rd constraint implies the

4th, and the 3rd is implied by the 1st (for the latter 2 cases) or the 2nd (for the former 2

cases). By “vanishing”, we mean up to constants, for the case of vanishing superhelicity.

(Nonvanishing superhelicity can be described by introducing “spin” operators, in addition

to these “orbital” ones defined in terms of just the supergroup coordinates.)

To see that this classification of (quadratic) constraints is consistent with the usual

identification of the superconformal mass shell, we evaluate them in the supertwistor rep-

resentation, which exists for D=3,4,6: the generators Ĝ in terms of the supertwistors ζ are

D = 3 : ĜAB = 1
2 [ζA, ζB}, {ζA, ζB] = ηAB

D = 4 : ĜA
B = 1

2 [ζA, ζ̄B}, {ζ̄A, ζB] = δA
B, h = 1

2 [ζA, ζ̄A}

D = 6 : ĜAB = 1
2{ζ

a
A, ζaB], [ζaA, ζbB} = CabηAB, hab = 1

2{ζa
A, ζbA]

3 with indices A,B in the defining representation (and defining SU(2) indices a, b for D=6),

where h is the superhelicity (generating the little group U(1) for D=4, or SU(2) for chiral

– 6 –
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D=6), which is set to vanish in our case. (For D=4 we have given the U(N|2, 2) generators;

in coordinate representations, only (P)SU(N|2, 2) need be defined. Note that twistors are

essentially γ-matrices for OSp, or creation/annihilation operators for U, satisfying graded

anti commutation relations; thus the bosonic ones anticommute with the fermionic ones.)

Substitution of these representations into the corresponding constraints numbers 2,3,4

above shows they vanish up to constants for vanishing superhelicity, and do not vanish for

number 1.

Once the correct constraints have been identified, it’s more convenient (for purposes

of applying isotropy conditions or coupling background fields) to express the constraints in

their dual form in terms of (free) covariant derivatives (Ĝ → d).

2.2 N=0

For the case N=0, we can examine arbitrary dimensions, with the generators carrying

vector indices; then we have

SO(D, 2) :
(

⊗
)

S
= ⊕ ⊕ ⊕ •

(the ordering is as above, but the roles of symmetry and traces have changed.)

We now outline the solution of the constraints. In the conformal case, the constraints

are, in terms of SO(D−1,1) indices,

dim •

2 P 2

1 Sm
nPn + wPm S[mnPp]

0 Sm
pSpn + K(mPn) − tr wSmn + K[mPn]

0 S2 + (D + 1)w2 + (D − 2)K · P S[mnSpq]
1
2S2 − w2 − 2K · P

−1 Sm
nKn − wKm S[mnKp]

−2 K2

for momentum P , spin S, scale weight w, and covariant derivative for conformal boosts

K. The dimension-2 constraint allows us to choose a lightcone frame to make the analysis

simpler. The dimension-1 constraints then imply S = w = 0 (assuming the momentum is

not identically 0). The surviving dimension-0 constraints then imply K = 0. So we are left

with a massless scalar.

In the AdS case, in terms of SO(D,1) indices, we have

•

P 2 − 1
2S2

S[mnPp]

S[mnSpq]

We again find S = 0, describing a scalar.

– 7 –
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3 AdS4 supergroup space

3.1 Constraints

We now examine the constraints in more detail for the cases of interest for D=4:

(P)SU(N|2, 2) for superconformal, and OSp(N|4) for super-AdS. Conveniently, D=4 is the

only case for which there are classical supergroups for all N that can be applied for both

superconformal and super-AdS. As a result, a supertwistor analysis can be applied for

super-AdS as well as for superconformal (using the same supertwistors).

For the superconformal group we find from the analysis of the previous section, sub-

stituting the supertwistor expression,

superconformal • • ⊕ • ⊕ • : ĜAB
CD ≡ Ĝ(A

(CĜB]
D] − 1

2δ(A
CδB]

D = 0

The Kronecker δ term can be considered as arising from “normal ordering”.

However, the analog in the AdS case does not take a similar form, although the

constraints there are a subset of (a linear combination of) the superconformal ones, be-

cause the OSp(N|4) generators themselves result from (graded) antisymmetrization of the

(P)SU(N|2, 2) ones:

ĜA
B → GAB ≡ Ĝ[A|

CηC|B)

where η is the graded-symmetric OSp(N|4) metric. Consequently the maximal subset of

the above constraints that can be expressed in terms of OSp(N|4) generators requires a

supertrace on the indices of the above constraints, in agreement with our previous analysis:

super-AdS ⊕ • : GAB ≡ G(A|
CGC|B] + str(I)ηAB = 0

The superhelicity is again required to vanish. (Note the “anomalous” η term vanishes

for N=4.) Similar constraints were proposed previously for the (10D) superparticle on

AdS5×S5 [11], using the superconformal isometry group.

3.2 Lightcone gauge

The constraints are most easily solved in a lightcone-type decomposition. First, it’s useful

to identify how the constraints relate to the more reducible superconformal constraints.

It will only be necessary to look at those constraints that do not include terms with

covariant derivatives corresponding to conformal boosts and S-supersymmetry, since those

constraints can be applied to arbitrary massless representations of supersymmetry [16],

of which the minimal representation appearing in first-quantization is a special case. (So

the rest are redundant, at least after choosing conformal boosts and S-supersymmetry as

the isotropy group.) Separating out the PSU(N|2, 2) indices as A = (a, α,
.
α) (where a =

– 8 –



J
H
E
P
0
4
(
2
0
0
9
)
0
5
8

(a, a′)), those constraints are

A ≡ 1
4 Ĝαβ

.
γ
.
δCβαC̄.

δ
.
γ

= pα
.
αpα

.
α

Baα ≡ 1
2 Ĝaα

.
γ
.
δC̄.

δ
.
γ

= pα

.
απ̄a

.
α

B̄a
.
α ≡ 1

2 Ĝαβ
a
.
αCβα = pα

.
απa

α

Cα

.
α ≡ Ĝα

B
B

.
α = Sα

βpβ

.
α − S̄

.
α
.
βp

α
.
β
− πa

απ̄a

.
α

Cint,aα
b
.
α ≡ Ĝaα

b
.
α = ta

bpα
.
α + πb

απ̄a

.
α

Cχ
ab

αβ ≡ Ĝαβ
ab = πa

απb
β

Cχ̄,ab

.
α
.
β ≡ Ĝab

.
α
.
β = π̄a

.
απ̄b

.
β

Dα

.
α ≡ 1

2(Ĝαβ
β
.
α + Ĝ

α
.
β

.
α
.
β) = Sα

βpβ

.
α + S̄

.
α
.
βp

α
.
β

+ wpα

.
α

where we have labeled the constraints as in [16]. Note that in D=4 the Pauli-Lubanski

equation C is equivalent to the D constraint in the presence of the B constraint and the

Klein-Gordon equation A.

We now compare these to the OSp(N|4) constraints: in terms of

dAB =







b β
.
β

a tab πaβ π̄a
.
β

α −πbα Sαβ pα
.
β

.
α −π̄b

.
α pβ

.
α S̄

.
α
.
β







we have

0 = GAB ≡ dACdBDηDC =






tactbc + πaγπb
γ + π̄a

.
γ π̄b .

γ tacπβ
c − πaγSβ

γ − π̄a
.
γpβ .

γ tacπ̄
.
β

c − πaγp
.
β

γ − π̄a
.
γS̄

.
β .

γ

. . . παcπβ
c − SαγSβ

γ − pα
.
γpβ .

γ παcπ̄
.
β

c − Sαγp
.
β

γ − pα
.
γ S̄

.
β .

γ

. . . . . . π̄
.
αcπ̄

.
β

c − p
.
αγp

.
β

γ − S̄
.
α
.
γ S̄

.
β .

γ







≈







? Baβ B̄a
.
β

. . . CαβA Cα
.
β

. . . . . . C̄
.
α
.
βA







where “. . .” is proportional to the transposed element, “≈” refers to extra terms, and we

have ignored symmetrization of indices, which produces terms linear in generators. Note

that extra signs from reordering of super-indices are implicit: for example, in the supertrace

of indices in the definition of the OSp constraints, there is a factor of (−1)BD, which is

−1 if both indices are Sp(4) and +1 otherwise, because supertraced indices belong next

to each other. (We could also just use the graded symmetry of the second d factor, but

we want to use notation that applies to the general case, where d has no symmetry.) The

constraint “?” will be found to be the square of the lightcone part of the Cint constraint.

To analyze these constraints it’s instructive to look first at the case N=0: in the

superconformal case, we can solve the A constraint as usual. The C constraint is then the

usual Pauli-Lubanski equation for vanishing helicity: we can thus set the spin operators Sαβ

and S̄
.
α
.
β to vanish. (The components of the spin not explicitly set to vanish by this equation

– 9 –



J
H
E
P
0
4
(
2
0
0
9
)
0
5
8

do not appear, and so can be eliminated from the theory by unitary transformation, or

equivalently by a gauge condition for the gauge transformation generated by this equation.)

The D constraint does the same if we set the conformal weight w = 0: it’s the same as the

Pauli-Lubanski equation except for a (Hodge) duality transformation on the spin (and in

general also switching helicity with conformal weight). The AdS case is similar except for

the extra terms in A; but these drop out after solving the Pauli-Lubanski equation.

We then choose a lightcone Lorentz frame

pα
.
α =

(

.
+

.
−

+ p+ 0

− 0 p−

)

For general N, the A and B constraints are used to solve for p−
.
−, and π−

a and π̄
.
−
a , as usual.

The C constraint then determines Sαβ and S̄
.
α
.
β. (Again a D constraint is unnecessary.)

Now the ? constraint will perform a similar function for tab: after plugging in the solution

for π−
a and π̄

.
−
a , it becomes

t̃act̃bc = 0, t̃ab = tab −
1

p+
π̄a

.
+πb+

We recognize t̃ab as proportional to the superconformal Cab+
.
+

int . Since the internal space

is compact, the vanishing of the square of this operator implies its own vanishing. (In

particular, we see all the Casimirs of these modified group generators vanish.) Thus the

AdS constraints are equivalent to the larger superconformal set: they yield the supertwistor

representation.

3.3 BRST

Isotropy constraints (really gauge conditions) are expressed in terms of covariant derivatives

(since they preserve the global symmetry), so from now on we also represent the quadratic

constraints (field equations) in terms of them, also. (The supertwistor representation of

the previous subsection applies only to the group generators.) The covariant derivatives

are a subset of those for the superconformal group. The explicit form of the latter has been

given previously; we won’t need them here (only their algebra).

In matrix notation, these constraints are

dηdT = dT ηd = 0

(for graded transpose “T ”). The most interesting things about these constraints are that:

(1) Their index structure is that of a matrix, as for the covariant derivatives d themselves,

except perhaps for the symmetry on their two indices; and (2) the same is true for their

reducibility condition, and the reducibility of the reducibility condition, etc. The net result

is that the complete minimal BRST operator can be written in the simple form (matrix

multiplication with metric, and trace, implied)

Q =

∞
∑

m,n=0

cm+n+1bmbn + f . . .

– 10 –
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where the indices label the ghost generation,

b0 = d

and “f . . .” denotes structure-constant terms. (We won’t need those for the contracted

projective case.)

In the present case d is graded antisymmetric on its 2 indices. We then have

dT = −d

(dηd)T = +(dηd)

for the constraints G1 ≡ dηd = 0. Then the reducibility conditions are

G2 ≡ dηG1 − G1ηd = +GT
2 = 0

G3 ≡ dηG2 + G2ηd = −GT
3 = 0

etc., where the sign for the symmetry of Gn alternates as −++−−++−− · · · . Explicitly,

with G0 ≡ d,

Gn+1 ≡ dηGn + (−1)nGnηd = (−1)n(n−1)/2GT
n+1 = 0

Using this construction for the BRST operator, and including terms for closure (Q2 = 0)

leads to the above expression for the BRST operator, where

cn = −(−1)n(n+1)/2cT
n

and similarly for b.

No nonminimal degrees of freedom are needed; we can choose a “temporal” gauge

for the first-quantized gauge fields, as is standard for D=1 and 2 (because it doesn’t

break worldsheet or spacetime Lorentz invariance). Thus, there is only a (“1D”) tower

of ghosts [13] (for all of x, θ and y), as opposed to the (“2D”) pyramid of ghosts (for just

θ) for the approach of that name.

4 N=4 projective superspace

4.1 Projective gauge

In the previous section we analyzed the first-quantized theory on shell by simultaneously

solving all the constraints explicitly and choosing a lightcone gauge for the symmetry

generated by the constraints. We can instead solve a subset of the constraints and choose

their corresponding gauges in such a way as to manifestly preserve Lorentz covariance.

This can be achieved in a way that is equivalent to completely eliminating some of the

coordinates (a subset of those eliminated in the lightcone gauge). Since the algebra of

gauge conditions must close, this is the same as choosing an isotropy subgroup. Then the

isotropy group can be used to reduce the original constraints, eliminating constraints, or

terms in constraints, that vanish off shell as a consequence of the vanishing of the isotropy

covariant derivatives themselves. This leads to the cosets of subsection 1.3, corresponding

to projective superspace.
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To treat these cosets, we divide the range of OSp(N|4) indices in half as

A = (A,A′)

for the two OSp(1
2N|2)’s. The constraints resulting from dropping isotropy covariant deriva-

tives du, leaving just the projective ones dw, will have a similar form as before, but the

indices will be reduced from OSp(N|4) to (one of the) OSp(1
2N|2): dw has the index struc-

ture dA
A′

.

Indices are contracted with one of the OSp(1
2N|2) metrics (or its inverse),

ηAB = (δab, Cαβ), ηA′B′ = (δa′b′ , C̄ .
α
.
β
); Cαβ = C̄ .

α
.
β

= −Cαβ = −C̄
.
α
.
β =

(

0
i
−i
0

)

(if we want to keep track of dimensional analysis, we can include a factor of the anti-

de Sitter radius 1/R with the Kronecker δ’s, but being careful to distinguish the inverse

metrics, where R appears instead of 1/R.)

In the explicit form for the BRST operator (which takes the same form as above, but

with different symmetry for the matrices, as discussed below), the algebra for dw closes only

on du, so Q2 = 0 modulo such terms. A separate term to enforce du = 0 can easily be added,

along with the corresponding terms for closure of the dwdw algebra on du. (Similar remarks

apply to adding a Lagrange multiplier term for du to the Hamiltonian.) Alternatively, we

can work just in the contracted coset space, and du can be ignored altogether. If we use

the contracted coset, the dw are simply partial derivatives with respect to w (up to factors

of isotropy coordinates u, which can be ignored upon restriction to the coset space).

4.2 Lightcone gauge again

First we write out the different Lorentz pieces of the constraints: in terms of

dA
A′

=

(

a′
.
α

a ta
a′

π̄a

.
α

α πα
a′

pα

.
α

)

we have

GAB ≡ dA
A′

dB
B′

ηB′A′ =

(

b β

a ta
a′

tba′ + π̄a

.
απ̄b

.
α ta

a′
πβa′ − π̄a

.
αpβ

.
α

α . . . πα
a′

πβa′ − pα

.
αpβ

.
α

)

= 0

(with the usual signs for a fermionic index interrupting the contraction of two fermionic

indices) and similarly for the complex-conjugate constraints ḠA′B′
. In particular we have,

from Gαβ , Ga
a, and their complex conjugates,

p2 = π2 = π̄2 = −t2

(plus one redundant equation).

From G+a and its complex conjugate we find

π−a′

=
1

p+
itaa′

π̄a

.
+

– 12 –
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and its complex conjugate. (G−a and its complex conjugate are redundant.) This tells us

π2 =
1

p+
taa′

π̄a

.
+π+

a′

We then have, from the remaining constraint Gab and complex conjugate,

t̂a
a′

t̂ba′ = t̂aa′ t̂ab′ = 0

defining

t̂aa′ ≡ taa′ −
1

p+
π̄a

.
+π+

a′

This expression is the independent piece of the constraint from the bigger superconformal

set,

pα
.
αtaa′ − π̄a

.
απαa′ = 0

Since the vanishing of the square of a Hermitian operator implies the vanishing of the

operator, we find

t̂aa′ = 0

(this is clear on the original coset, since the internal space is compact, so there is no ambi-

guity in normalization of states. However, things might be more subtle on the contracted

coset.) The hermiticity of this operator follows from the fact that it is a piece of the super-

conformal field equations, which can be expressed in terms of group generators (instead of

covariant derivatives), which are by definition Hermitian.

It then follows that

p2 = π2 = π̄2 = −t2 = 0

(t2 = 0 does not imply taa′ = 0, since t is not Hermitian with respect to the charge conjuga-

tion that defines the inner product.) So x dependence is determined by the Klein-Gordon

equation (as usual in the lightcone formalism), y dependence is completely determined,

and θ dependence is determined in terms of half the original θ’s, i.e., 1/4 of those of the

full superspace, as usual.

4.3 Counting

The results of subsection 3.3 for counting ghosts can be applied directly to the 4D case by

using OSp(N|4) indices, dividing their ranges in half, and dropping irrelevant blocks. The

result is as above for odd n, except both indices are primed or both unprimed, while for

even n we have mixed indices:
{

c2n+1,AB , c2n+1,A′B′ where c2n+1 = (−1)ncT
2n+1

c2n,AB′

Thus the symmetry has a cycle of 4, going as asymmetric, (twice) graded symmetric,

asymmetric, (twice) graded antisymmetric.

We can now count the naive effective number of modes for any of x, θ, y. Infinite sums

can be defined, e.g., by regularization:

(1 + z)−1 = 1 − z + z2 − . . . ⇒ 1 − 1 + 1 − . . . = 1
2

– 13 –
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We then have for each variable (remember w carries OSp(1
2N|2) indices)

x : 4 − 2 · 1 + 4 − 2 · 3 + . . .

= (1 − 1 + 1 − . . .) · 4 + (1 − 1 + 1 − . . .) · 2

= 3 = D − 1

θ : 2N − 2N + 2N − 2N + . . .

= (1 − 1 + 1 − . . .) · 2N

= N

y : (1
2N)2 − 2 ·

1
2N(1

2N + 1)

2
+ (1

2N)2 − 2 ·
1
2N(1

2N − 1)

2
+ . . .

= (1 − 1 + 1 − . . .) ·
1

4
N2 − (1 − 1 + 1 − . . .) · 1

2N

=
1

8
N(N − 2)

where for x and y we have separated the sum into averages over symmetry/antisymmetry

plus the deviations due to either. The x’s (and p’s) have just the “transverse” degrees of

freedom D − 1, which in the equivalent ghost-free lightcone analysis arise from the gauge

choice x+ = τ (and p2 = 0 eliminating p−). This agrees with the usual scalar particle,

which has just x and 1 c; but here there are 2 (identical) constraints for N = 0, resulting

in reducibility to cancel 1. For θ we also find the number of physical degrees, which is

just 1/4 that of the full superspace. However, though the y’s have no physical degrees

of freedom, they do not cancel by this counting because they are eliminated by quadratic

constraints, not linear. (But note that net bosons and fermions cancel for N = 4, as

they do at each ghost level. Also, because of the grading the x counting is just the

N = −4 case of the y counting.) Interestingly, for the case of OSp(n|2)OSp(N − n|2)

with n 6= 1
2N the sum diverges for y, even with the above regularization, giving an extra

term −(n − 1
2N)2 · (1 + 1 + . . .).

5 N=4 super Yang-Mills

5.1 Covariant derivatives

We now consider the formulation of N=4 super Yang-Mills in this projective superspace.

Since in any linearized quantum gauge theory in a background of the same gauge theory, lin-

earized gauge invariance of the quantum theory requires the background to be on shell [15],

we will here restrict ourselves to an on-shell background. However, this background is on

shell with respect to the full nonlinear field equations, which is sufficient to construct the

Feynman rules: for example, tree graphs can be derived from perturbative solutions to the

classical equations of motion. Thus, the existence of this construction, combined with the

off-shell formulation of the linearized theory, should be sufficient to prove the existence of

the nonlinear off-shell theory, which will be left to another paper.

To relate to the known on-shell theory in the “full” superspace, we first consider its

manifestly OSp(N|4) covariant form. Then we will show that, after a simple redefinition,
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the covariant derivatives in the isotropy subspace have vanishing field strengths, allowing

the coset to be taken.

In addition to the usual 4 spacetime and 4N anticommuting coordinates, this full

superspace contains also internal (bosonic) coordinates for not only the AdS R-symmetry

group SO(4) but also the Lorentz group. Of course, as for (N=0) gravity in curved space,

we treat the spacetime derivatives and Lorentz (spin) generators as separate, even though

the Killing vectors of AdS that generate SO(3,2) do not distinguish “translations” from

“Lorentz transformations”. This is fully consistent with the distinction between symmetry

generators and covariant derivatives, and thus the usual coset construction for Sp(4)/Sp(2)2

(“left” and “right” action on the group elements). What is unusual here is that we introduce

coordinates for the Lorentz spin, as well as corresponding components for the Yang-Mills

gauge fields. (The Yang-Mills gauge group is still the same; it is only that it is defined

over a bigger manifold.) This is already done for R-symmetry, in projective and harmonic

superspace. The Yang-Mills field strengths in these directions vanish, and thus gauges can

be chosen where their gauge fields do also. However, in some cases it may prove convenient

to choose gauges where they do not, as in the usual N=2 harmonic construction [16]. An

interesting example is the case of selfdual Yang-Mills, even for N=0, which is known to be

analogous to N=2 projective and harmonic superspaces [8, 15]. In the lightcone gauge for

this theory, we separate the + and − components of the undotted spinor index (but not

the dotted one) to solve some of the selfduality conditions as

{∇+
.
α,∇

+
.
β
} = 0 ⇒ A+

.
α = 0

{∇+[
.
α,∇

−
.
β]
} = 0 ⇒ A−

.
α = ∂+

.
αA−−

(where ∇ = d + iA) in terms of the “prepotential” A−−. But the solution of the second

equation automatically follows from the first because of Lorentz invariance, when it is

gauged; the prepotential appears already as a potential: introducing ∇αβ,

{∇+
.
α,∇−−} = ∇−

.
α ⇒ A−

.
α = ∂+

.
αA−−

Pure spinors are also related to (coset) Lorentz coordinates.

5.2 Background

We first express the covariant derivatives in manifestly SO(N) covariant form; their algebra

is the obvious combination of the OSp(N|4) algebra with that of the flat-space super Yang-

Mills covariant derivatives:

[∇ab,∇cd] = −η[c|[a∇b]|d]

[∇ab,∇cγ ] = −ηc[a∇b]γ

{∇aα,∇bβ} = −Cαβ(∇ab + φab) − ηab∇αβ

{∇a
.
α,∇

b
.
β
} = −C .

α
.
β
(∇ab + φ̄ab) − ηab∇ .

α
.
β

{∇aα,∇
b
.
β
} = −ηab∇α

.
β

[∇αβ,∇bγ ] = −Cγ(α∇bβ)

– 15 –



J
H
E
P
0
4
(
2
0
0
9
)
0
5
8

[∇aα,∇
γ
.
β
] = Cαγ(∇

a
.
β

+ W
a
.
β
)

[∇a
.
α,∇

γ
.
β
] = C .

α
.
β
(∇aγ + Waγ)

[∇αβ ,∇
γ
.
δ
] = −Cγ(α∇β)

.
δ

[∇
α
.
β
,∇

γ
.
δ
] = Cαγ(∇ .

β
.
δ
+ f .

β
.
δ
) + C .

β
.
δ
(∇αγ + fαγ)

[∇ .
α
.
β
,∇

γ
.
δ
] = −C.

δ(
.
α
∇

γ
.
β)

The Bianchi identities give almost identical results to those of flat space, the only difference

being the appearance of a curvature term (resembling a mass term) in the conformal scalar

field equation. They imply the following field equations for N=4

[∇
α
.
β
,W a

.
β] − [φab,W b

α] = 0

[∇α

.
β, f.

γ
.
β
] +

1

4
[φab, [∇α

.
γ , φ̄ab]] − {W b

α,W b
.
γ} = 0

[∇γ
.
β, [∇

γ
.
β
, φab]] − 2{W a

.
β,W

b
.
β
} − ǫabcd{W

cγ ,W d
γ} − 4φab − [φbc, [φad, φ̄cd]] = 0

and relations among the field strengths:

[∇ab, φcd] = −η[a[c|φb]|d]

[∇ab,Wcγ ] = −ηc[aWb]γ

[∇aβ, φcd] = −[∇cβ, φad]

[∇
a
.
β
, φcd] = ηa[cW d]

.
β

{∇aα,Wbβ} = −ηabfαβ + Cαβ(1
2 [φac, φ̄b

c] − φ̄ab)

{∇aα,W
b
.
β
} = −[∇

α
.
β
, φab]

[∇a
.
α, fβγ ] =

1

2
[∇(β

.
α,Waγ)]

[∇a
.
α, f .

β
.
γ
] = C .

α(
.
β
W a

.
γ) −

1

2
C .

α(
.
β
[∇δ .

γ),Waδ]

φab = 1
2ǫabcdφ̄cd

where the last is determined only up to a phase.

5.3 Projective gauge

N=4 is the only projective case where the ∇u algebra has field strengths, but these can

be absorbed by (the gauge fields of) the SO(2) derivatives. (A similar procedure works for

the N=2 chiral case, but not for N=4 chiral.) Examining the relations

{∇aα,∇bβ} = −Cαβ(∇ab + φab) − ηab∇αβ

{∇a′ .α,∇
b′
.
β
} = −C .

α
.
β
(∇a′b′ + φ̄a′b′) − ηa′b′∇ .

α
.
β

φab = Cabφ, φ̄a′b′ = Ca′b′φ, [∇u, φ] = 0

(for ∇u = (∇ab,∇a′b′ ,∇aα,∇a′ .α,∇αβ ,∇ .
α
.
β
)), we see that we can consistently impose the

isotropy constraints

∇αβ = ∇ .
α
.
β

= ∇aα = ∇a′ .α = ∇ab + φab = ∇a′b′ + φ̄a′b′ = 0
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as a closed algebra. (This is equivalent to a redefinition of the SO(2) derivatives.) In

particular, we can choose the gauge du = 0 (i.e., the above minus du = 0). In this gauge,

there is a residual gauge invariance with duλ = 0; i.e., the gauge parameter is projective.

At that point we can work exclusively in terms of ∇w.

Some interesting features of this required modification are: (1) It involves only the

SO(n)SO(N−n) isotropy derivatives, and hence requires the super anti-de Sitter construc-

tion. (The analogous derivatives in flat superspace would be central charges, which would

break superconformal invariance. However, we can still use our contracted coset, since

the isotropy group is unchanged.) (2) The modifications must involve only a single field

strength to avoid generation of field-strength commutator terms (and hence nonclosure) in

the algebra of isotropy constraints, and hence both n and N−n ≤ 2. This shows that chiral

superspace does not exist for N=4 Yang-Mills.

6 Four-point amplitude

6.1 Duality

The four-point amplitude in this theory has been shown to have a simple form in projective

superspace, where coordinate/momentum duality is almost manifest [11]. This duality is

the one that results from (super) Fourier transformation, whereupon coordinates (of ver-

tices) are replaced with loop momenta, after applying momentum conservation. (External

line momenta are also expressed as differences, by interpreting paths connecting adjacent

external lines as “half-loops”, with their own momenta.) Thus graphs are replaced with

(geometrically) dual graphs [19]. In string theory, introducing a (random) lattice for the

worldsheet, this is recognized as T-duality [20]. The AdS5×S5 string has been shown to

have invariance under such a T-duality [21], implying that N=4 super Yang-Mills has an-

other PSU(4|2, 2) symmetry that includes the usual Lorentz and R-symmetry, but also

“translation” invariance in the loop supermomenta (of a projective or chiral superspace),

and their completion to a full dual superconformal group.

A proposal for this dual superconformal invariance of the theory had already been made

directly on the N=4 Yang-Mills amplitudes [22]; however, it requires the inclusion of twistor

coordinates with both the coordinate and momentum spaces, and is thus not a complete

duality. The reason why the twistors were found necessary is that this formulation is based

on chiral superspace, which is simplest for MHV amplitudes. In that space the chiral field

strengths are the selfdual parts of the (superfield which at θ = 0 is the) Yang-Mills field

strength, which carries Lorentz indices. They thus use twistors to carry these indices. An

alternative would be to introduce spin coordinates; but these do not naturally appear in

chiral superspace (at least according to our projective construction). The scalar factor

of the amplitude (the purely spacetime-momentum factor) would then acquire additional

denominator factors of momenta to cancel those introduced into the chiral external line

factors, since the Yang-Mills field strength has higher dimension than the scalars. At least

effective actions would be expected to be more complicated in this approach, since the

chirality of this field strength holds only at the linearized level.
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6.2 From chiral to projective

Although we do not yet give the Feynman rules in this paper, we present an alternate

derivation of this amplitude in projective superspace from chiral supertwistor space, which

could be generalized to known higher-point amplitudes. We do this not to illustrate the

method, which can be complicated in general (especially if we include the effort required to

derive the chiral supertwistor expressions with which we begin), but to show the simplicity

of the projective superspace result. The method is to transform the chiral supertwistor

into projective supertwistor space by Fourier transforming half the fermionic twistor co-

ordinates; the result can then be put into projective supercoordinate space by the usual

(projective super) Penrose transform. The result can already be guessed by noting that

the four-point amplitude is both MHV and anti-MHV: for the tree case, the chiral and

antichiral supertwistor expressions are

A4χ =
δ4(
∑

pα
.
α)δ8(

∑

πaα)

〈12〉〈23〉〈34〉〈41〉
, A4χ̄ =

δ4(
∑

pα
.
α)δ8(

∑

π̄a .
α)

[12][23][34][41]

(the sums are over external lines.) Thus we’ll find that the ubiquitous twistor denominator

of MHV, and its complex conjugate of anti-MHV, are replaced in projective supertwistor

space by their magnitude, which is directly expressible in terms of momenta (e.g., st for

the tree case).

We use the notation ijkl to label the 4 distinct external lines. Then the only twistor

identity we need is the equality of the MHV and anti-MHV expressions for the pure-gluon

amplitude:
〈ij〉4

〈12〉〈23〉〈34〉〈41〉
=

[kl]4

[12][23][34][41]

This allows us to evaluate the fermionic Fourier transform with respect to any one of the

4 twistor fermions (with respect to N=4, but all four of the external lines):

∫

d4ζ̄i eiζ̄iζi δ2(λiαζ̄i) =
∑

〈ij〉ζkζl = δ2(λ̄i
.
αζi)

(

〈12〉〈23〉〈34〉〈41〉

[12][23][34][41]

)1/4

with Einstein summation understood on identical indices. Thus this Fourier transformation

replaces the conservation δ-function for total πα = λαζ̄ with one for the corresponding

π̄ .
α = λ̄ .

αζ, and throws in a phase factor. In addition to reproducing the correct relation

between the above forms of the amplitude in chiral and antichiral supertwistor space, it

gives the intermediate result for projective supertwistor space:

A4Π =
δ4(
∑

pα
.
α)δ4(

∑

παa′)δ4(
∑

π̄a
.
α)

1
4st

Note that this amplitude is missing an explicit δ-function for conservation of taa′ (which

would actually be a Kronecker δ, because of the compactness of the R-space): this conser-

vation is implied by the other δ-functions (in twistor superspace, or on shell).

In this form, the amplitude is already expressed directly in momentum superspace; we

need only attach external line factors, which are just the (linearized) projective superfield
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strengths φ:

Â4Π =

∫

d16pi d32πi d16ti φ̃(1)φ̃(2)φ̃(3)φ̃(4)
δ4(
∑

pα
.
α)δ4(

∑

παa′)δ4(
∑

π̄a
.
α)

1
4st

(the
∫

d16ti should really be a sum. Of course, the ti conjugate to yi should not be confused

with the Mandelstam variable t.) For comparison, in the chiral case, we need to multiply

numerator and denominator by [12][23][34][41] to put the amplitude into momentum space:

the denominator becomes (st)2, while for the numerator factor, including external line

factors, we have

1

〈12〉〈23〉〈34〉〈41〉
=

[12][23][34][41]

(1
4st)2

→
f̄ .

α

.
β(1)f̄ .

β

.
γ(2)f̄.

γ

.
δ(3)f̄.

δ

.
α(4)

(1
4st)2

⇒ Â4χ =

∫

d16pi d32πi f̄ .
α

.
β(1)f̄ .

β

.
γ(2)f̄.

γ

.
δ(3)f̄.

δ

.
α(4)

δ4(
∑

pα
.
α)δ8(

∑

πaα)

(1
4st)2

Note that there is no direct analog for the chiral supertwistor scalar wave function in

momentum (or coordinate) superspace, unlike the projective case: it is a (super)helicity

amplitude, and does not directly covariantize (except by mutliplying by twistors to get

tensors, as above). This is a consequence of the fact that the only scalar superfield strength

is projective, not chiral (even in the linear approximation).

We can easily Fourier transform the projective amplitude back to coordinate super-

space: the x dependence is as usual, the θ dependence is the local product, and the y

dependence evaluates at y = 0:

Â4Π =

∫

d16xi d8θ φ(x1, θ, 0)φ(x2, θ, 0)φ(x3, θ, 0)φ(x4, θ, 0)
δ4(x1 − x2 + x3 − x4)

x2
12x

2
23

7 Prospects

These results can be generalized to other N: for example, the simpler case of N=2 would

be useful to compare with the known harmonic and projective formalisms. Since in general

such first-quantization describes superspin 0, the “smallest” supermultiplet (unless addi-

tional spin variables are included), N=2 would describe a scalar multiplet, which could

also be coupled to external Yang-Mills. The R-space in that case is SO(2), corresponding

to the identification of the usual projective R-space with the unit circle. Similarly, N=8

would describe (gauged) supergravity. All cases N≤8 could be coupled to external (gauged)

supergravity; the formalism suggests that the tangent space for this supergravity would be

OSp(n|2)OSp(N−n|2), rather than the purely bosonic (Lorentz and R-symmetry) tangent

spaces that have been used so far.
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These results can also be generalized to some other dimensions; we have at least

D = 5 :
(P)SU(N|2, 2)

OSp(N|4)

D = 4 :
OSp(N|4)

OSp(n|2)OSp(N− n|2)

D = 3 :
OSp(1

2N|2)2

OSp(1
2N|2)

D = 2 :
OSp(N|2)

U(1
2N|1)

The method for solving the constraints is similar, and correctly produces (at least the free)

supersymmetric theories in those dimensions.

Another problem is whether superconformal invariance can be made manifest. A better

understanding of projective lightcone limits might do that. This might also shed some light

on the relationship between the harmonic and projective approaches: for example, for the

N=2 case, we see the R-symmetry part of the coset space in D=5 is SU(2)/SO(2), as in

the usual N=2 harmonic superspace, while the coset space in D=4 is just SO(2), so the

sphere reduces to the circle.

In principle, superconformal invariance could be made manifest by using an action

with the full superconformal set of constraints:

d(A
(A′

dB]
B′] = 0

However, this set is highly reducible: in particular, it reduces to our anti-de Sitter ones

dA
A′

dB
B′

ηB′A′ , dA
A′

dB
B′

ηBA

(with or without contraction), and the ghosts are much messier [23]. Alternatively, one

could consider the flat-space limit (R→ ∞) of the anti-de Sitter constraints,

dA

.
αdB

.
βC̄ .

β
.
α
, dα

A′

dβ
B′

Cβα

but this loses some necessary constraints: taa′ drops out altogether. These different sets

of constraints can be considered as related to partial gauge fixing of the corresponding

Lagrange multipliers.

It may be possible to find at least some of the superconformal invariance through

transformations of the Lagrange multipliers. For example, the usual action for a scalar

particle,
∫

g
.
x2, is conformal through transformation of g, and an (A)dS metric can be

obtained by redefining g by the appropriate Weyl scale factor.

An obvious topic is the gauge-invariant field theory action for N=4 Yang-Mills, and its

second-quantization. It should be noted that the supergraph rules will not be manifestly

superconformal: the second-quantized gauge-fixing term for Yang-Mills breaks conformal

invariance, and first-quantization requires gauge-fixing the worldline metric, which also
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breaks conformal invariance. However, it should be possible to preserve some useful affine

subalgebra.

Alternatively, by finishing the treatment of first-quantization in an external N=4 su-

per Yang-Mills background, it should be possible to define vertex operators that allow

supergraph calculations directly in a first-quantized approach, in analogy to string theory.

It may then be possible to reproduce many of the results of the gauge/string correspon-

dence without requiring the full string machinery. For example, properties such as N=4

superconformal symmetry, or its “dual”, may be sufficient.

Unique to the case N=4, the numbers of commuting and anticommuting coordinates

cancel (at each ghost level). This suggests that potential zero-mode problems (and their

resulting picture-changing or equivalent vacuum problems) could be directly canceled, after

an appropriate (worldline-infrared) regularization.

Even if these first-quantized methods prove useful for deriving expressions for S-

matrices, a more important question is whether it can be helpful in calculating anything

relevant to confinement. In this regard, a random lattice approach to the string would

suggest that this first-quantized action for the N=4 superparticle might lead to a first-

quantized action for a 4D N=4 superstring.
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